Synthesis of Functionalized Oxazolones by a Sequence of Cu(II)- and Au(I)-Catalyzed Transformations

Florin M. Istrate, Andrea K. Buzas, Igor Dias Jurberg, Yann Odabachian, and Fabien Gagosz*

Laboratoire de Synthe`*se Organique, UMR 7652 CNRS/Ecole Polytechnique, Ecole Polytechnique, 91128 Palaiseau, France*

gagosz@dcso.polytechnique.fr

Received December 21, 2007

A study concerning a two-step sequence leading to the formation of diversely 1,5-disubstituted oxazolones is described. The mild conditions employed allow the efficient and rapid synthesis of a variety of such compounds via an initial Cu(II)-catalyzed coupling of a bromoalkyne with a secondary tert-butyloxycarbamate followed by a Au(I)-catalyzed cycloisomerization of the N-alkynyl tert-butyloxycarbamates thus obtained.

Oxazolones and their derivatives are attractive building blocks in organic synthesis. They have been sucessfully employed in a range of transformations mostly as an alkene unit in intramolecular Pauson-Khand reactions,¹ [4 + 2] $cycloadditions² palladium-catalyzed coupling reactions³$ radical additions or cyclizations,4 and in hydrogenation reactions for the synthesis of functionalized oxazolidinones.5 The oxazolone motif is also found in a variety of synthetic substances exhibiting a wide range of pharmacological activities.6 Surprisingly, there are only a few methods to synthesize polysubstituted oxazolones. Most use 1,2-ami-

10.1021/ol703077g CCC: \$40.75 © 2008 American Chemical Society **Published on Web 02/02/2008**

noketone derivatives as starting materials and involve either high temperature,⁷ strong basic⁸ or acidic conditions,⁹ or the use of toxic carbonylating reagents¹⁰ which are not always compatible with the substitution pattern of the substrates.

ORGANIC LETTERS

2008 Vol. 10, No. 5 ⁹²⁵-**⁹²⁸**

Gold(I) complexes have emerged as efficient and mild $catalysts¹¹$ for the synthesis of various oxygen-containing

^{(1) (}a) Nomura, I.; Mukai, C. *J. Org. Chem.* **²⁰⁰⁴**, *⁶⁹*, 1803-1812. (b) Nomura, I.; Mukai, C. *Org. Lett.* **²⁰⁰²**, *⁴*, 4301-4304.

^{(2) (}a) D'Andrea, S. V.; Freeman, J. P.; Szmuszkovicz, J. J*. Org. Chem.* **¹⁹⁹⁰**, *⁵⁵*, 4356-4358. (b) Hashimoto, N.; Ishizuka, T.; Kunieda, T. *Tetrahedron Lett.* **¹⁹⁹⁴**, *³⁵*, 721-724.

⁽³⁾ Choshi, T.; Fujimoto, H.; Sugino, E.; Hibino, S. *Heterocycles* **1996**, *⁴³*, 1847-1854.

^{(4) (}a) Yuasa, Y.; Ando, J.; Shibuya, S. *J. Chem. Soc., Perkin Trans. 1* **1996**, 465–474. (b) Butora, G.; Hudlicky, T.; Fearnley, S. P.; Gum, A. G.; Stabile, M. R.; Abboud, K. *Tetrahedron Lett.* **1996**, 37, 8155–8158. (c) Stabile, M. R.; Abboud, K. *Tetrahedron Lett.* **¹⁹⁹⁶**, *³⁷*, 8155-8158. (c) Hoshimoto, S.; Matsunaga, H.; Wada, M.; Kunieda, T. *Chem. Pharm. Bull.* **²⁰⁰²**, *⁵⁰*, 435-438.

^{(5) (}a) Shono, T.; Matsumura, Y.; Kanazawa, T. *Tetrahedron Lett.* **1983**, *²⁴*, 4577-4580. (b) Yonezawa, Y.; Shin, C.; Ohtsu, A.; Yoshimura, J. *Chem. Lett.* **¹⁹⁸²**, 1171-1172.

^{(6) (}a) Nam, N.-H.; Kim, Y.; You, Y.-J.; Hong, D.-H.; Kim, H.-M.; Ahn, B.-Z. *Bioorg. Med. Chem. Lett.* **²⁰⁰¹**, *¹¹*, 3073-3076. (b) Kudo, N.; Taniguchi, M.; Furuta, S.; Sato, K.; Endo, T.; Honma, T. J*. Agric. Food Chem.* **¹⁹⁹⁸**, *⁴⁶*, 5305-5312. (c) Puig, C.; Crespo, M. I.; Godessart, N.; Feixas, J.; Ibarzo, J.; Jimenez, J.-M.; Soca, L.; Cardelus, I.; Heredia, A.; Miraplex, M.; Puig, J. *J. Med. Chem.* **²⁰⁰⁰**, *⁴³*, 214-223. (d) Pereira, E. R.; Sancelme, M.; Voldoire, A.; Prudhomme, M. *Bioorg. Med. Chem. Lett.* **¹⁹⁹⁷**, *⁷*, 2503-2506.

⁽⁷⁾ Krieg, B.; Lautenschlaeger, H. *Justus Liebigs Ann. Chem.* **¹⁹⁷⁶**, 788- 792.

⁽⁸⁾ Lenz, G. R.; Costanza, C. *J. Org. Chem.* **¹⁹⁸⁸**, *⁵³*, 1176-1183. (9) Aichaoui, H.; Poupaert, J. H.; Lesieur, D.; Henichart, J.-P. *Tetrahe-*

dron **¹⁹⁹¹**, *⁴⁷*, 6649-6654.

⁽¹⁰⁾ For selected examples, see: *With phosgene* (a) Hamad, M. O.; Kiptoo, P. K.; Stinchcomb, A. L.; Crooks, P. *Bioorg. Med. Chem.* **2006**, *¹⁴*, 7051-7061. *With triphosgene* (b) Makino, K.; Okamoto, N.; Hara, O.; Hamada, Y. *Tetrahedron: Asymmetry* **²⁰⁰¹**, *¹²*, 1757-1762.

⁽¹¹⁾ For recent reviews on gold catalysis, see: (a) Gorin, D. J.; Toste, F. D. *Nature* **²⁰⁰⁷**, *⁴⁶*, 395-403. (b) Fu¨rstner, A.; Davies, P. W. *Angew. Chem., Int. Ed.* **²⁰⁰⁷**, *⁴⁶*, 2-42. (c) Hashmi, S. A.; Huchings, G. J. *Angew. Chem., Int. Ed.* **²⁰⁰⁶**, *⁴⁵*, 7896-7936.

heterocycles¹² by intramolecular addition of an oxygenated nucleophile onto an alkyne or an allene. In this respect, special attention has been paid to the *tert*-butyloxycarbonyl moiety which was used as the nucleophilic partner in the gold-catalyzed formation of butenolides,^{13a} dioxanones,^{13b,c} dioxolanones,^{13d,e} and oxazolidinones.^{13f}

Following our ongoing efforts in developing new goldcatalyzed transformations, 14 we now report that diversely functionalized oxazolones could be efficiently synthesized by a gold(I) isomerization of *N*-alkynyl *tert*-butyloxycarbamates.

Our synthetic approach, depicted in Scheme 1 (eq 1), relies on a two-step sequence. The initial Cu(II)-catalyzed coupling of a bromoalkyne **1** with a *tert*-butyloxycarbamate **2**, ¹⁵ would lead to the formation of an *N*-alkynyl *tert*-butyloxycarbamate **3**. A subsequent 5-*endo* gold-catalyzed isomerization of **3** would furnish the desired oxazolone **4** (Scheme 1, eq 1). Indeed, while this work was in progress, Hashmi and coworkers validated this approach and reported that **3** could actually be isomerized into oxazoles **4**, using 5 mol % of $Ph_3PAuNTf_2$ (Scheme 1, eq 2).¹⁶ Even if this procedure proved to be efficient (65-93% yield) and led to the desired products under mild conditions (0 °C or rt), we believed that our sequence could present a major advantage. Given the restricted access to functionalized iodonium salt **5** and its inefficient coupling with $3(27-51\%)$, it appeared to us that the Cu(II)-catalyzed coupling of **1** with **2** might advantageously broaden the scope of the transformation.17

We first investigated the Cu(II)-catalyzed step leading to the formation of the *N*-alkynyl *tert*-butyloxycarbamate **3**. Although numerous examples of direct copper-catalyzed cross-coupling of an alkynyl bromide with a carbamate, a sulfonamide, or an amide are described in the literature,¹⁵ only one example of such a reaction was previously reported using a *tert*-butyloxycarbamate such as **2** as the reactant, and the yield was very low (12%) .^{15a}

In spite of the poor yield, attributed by the authors to steric hindrance,^{15a} we decided to study this cross-coupling between a series of functionalized bromoalkynes **1a**-**^g** and *tert*butyloxycarbamates **2a**-**ⁱ** (Figure 1).

Figure 1. Bromoalkynes and *tert*-butyloxycarbamates used in the Cu(II)-catalyzed cross-coupling reaction.

Using slightly modified reaction conditions15a (20 mol % of $CuSO_4$ -5H₂O and 40 mol % of 1,10-phenanthroline as the ligand with K_3PO_4 as the base in toluene at 80 °C), we were delighted to see that the cross-coupling was generally much more efficient than previously reported (Table 1). A wide range of *^N*-alkynyl *tert*-butyloxycarbamates **3a**-**^v** containing various functionalities were thus synthesized in yields ranging

⁽¹²⁾ For selected examples, see: *Furans* (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. *Angew. Chem., Int. Ed.* **²⁰⁰⁰**, *³⁹*, 2285-2289. (b) Yao, T.; Zhang, X.; Larock, R. C. *J. Org. Chem. Soc.* **²⁰⁰⁵**, *⁷⁰*, 7679- 7685. (c) Hashmi, A. S. K.; Sinha, P. *Ad*V*. Synth. Catal.* **²⁰⁰⁴**, *³⁴⁶*, 432- 438. (d) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. *Org. Lett.* **2005**, *7*, ⁵⁴⁰⁹-5412. (e) Istrate, F.; Gagosz, F. *J. Org. Chem.* **²⁰⁰⁷**, *⁷³*, 730-733. *Oxazoles and oxazolines* (f) Hashmi, A. S. K.; Rudolph, M.; Shymura, S.; Visus, J.; Frey, W. *Eur. J. Org. Chem.* **²⁰⁰⁶**, 4905-4909. (g) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. *Org. Lett.* **²⁰⁰⁴**, *⁶*, 4391- 4394. (h) Milton, M. D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. *Chem. Commun.* **²⁰⁰⁴**, 2712-2713. (i) Kang, J. E.; Kim, H.-B.; Lee, J.-W.; Shin, S. *Org. Lett.* **²⁰⁰⁶**, *⁸*, 3537-3540. *Lactones and furanones* (j) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Genet, J.-P.; Michelet, V. J. *Am. Chem. Soc.* **²⁰⁰⁶**, *¹²⁸*, 3112-3113. (k) Liu, Y.; Liu, M.; Guo, S.; Tu, H.; Zhou, Y.; Gao, H. *Org. Lett.* **²⁰⁰⁶**, *⁸*, 3445-3448.

^{(13) (}a) Kang, J. E.; Lee, E.-S.; Park, S.-I.; Shin, S. *Tetrahedron Lett.* 1925-1926. (c) Kang, J;-E.; Shin, S. *Synlett* **2006**, 717-720. (d) Buzas, ¹⁹²⁵-1926. (c) Kang, J;-E.; Shin, S. *Synlett* **²⁰⁰⁶**, 717-720. (d) Buzas, A.; Gagosz, F. *Org. Lett.* **²⁰⁰⁶**, *⁸*, 515-518. (e) Lim, C.; Kang, J.-E.; Lee, J.-E.; Shin, S. *Org. Lett.* **²⁰⁰⁷**, *⁹*, 3539-3542. (f) Buzas, A.; Gagosz, F. *Synlett* **²⁰⁰⁶**, 2727-2730. (g) Robles-Machin, R.; Adrio, J.; Carretero, J. C. *J. Org. Chem.* **²⁰⁰⁶**, *⁷*1, 5023-5026. (h) Lee, E.-S.; Yeom H.-S., Hwang J.-H., Shin S. *Eur. J. Org. Chem.* **²⁰⁰⁷**, 3503-3507.

^{(14) (}a) Istrate, F., Gagosz, F. *Org. Lett.* **2007**, *9*, *16*, 3181. (b) Buzas, A.; Istrate, F.; Gagosz, F. *Angew. Chem., Int. Ed.* **²⁰⁰⁷**, *⁴⁶*, 1141-1144. (c) Buzas, A.; Gagosz, F. *J. Am. Chem. Soc* **²⁰⁰⁶**, *¹²⁸*, 12614-12615. (d) Buzas, A.; Istrate, F.; Gagosz, F. *Org. Lett.* **²⁰⁰⁷**, *⁹*, 985-988. (e) Buzas, A.; Istrate, F.; Gagosz, F. *Org. Lett.* **²⁰⁰⁶**, *⁸*, 1957-1959.

⁽¹⁵⁾ For leading references dealing with the Cu(II)-catalyzed coupling of bromoalkynes with carbamates, see: (a) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanove, I. K.; Shen, L.; Tracey, M. R. *J. Org. Chem.* **²⁰⁰⁶**, *⁷¹*, 4170- 4177. (b) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. *Org. Lett.* **²⁰⁰⁴**, *⁶*, 1151-1154. (c) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. *J. Am. Chem. Soc* **²⁰⁰³**, *¹²⁵*, 2368-2369. (d) Dunetz, J. R.; Danheiser, R. L. *Org. Lett.* **²⁰⁰³**, *⁵*, 4011-4014.

⁽¹⁶⁾ Hashmi, A. S. K.; Salathe´, R.; Frey, W. *Synlett* **²⁰⁰⁷**, 1763-1766. For another gold-catalyzed transformation of alkynylamides, see: Couty, S.; Meyer, C. Cossy, J. *Angew. Chem., Int. Ed.* **²⁰⁰⁶**, *⁴⁵*, 6726-6730.

⁽¹⁷⁾ The reaction reported by Hashmi and coworkers (ref 16) was limited to the use of substrates **3** bearing a hydrogen or a silyl group on the akyne and another electron-withdrawing group (Boc, Ts, Piv) on the nitrogen atom.

Table 1. Cu(II)-Catalyzed Formation of *N*-Alkynyl *tert*-Butyloxycarbamates*^a*

R1 Br 1a-g			CuSO ₄ .5H ₂ O 1,10-phenanthroline	R_{\uparrow}	
н 2a-i R_2 Boc			K_3PO_4		R_2
			toluene, 80 ℃	$3a-v$	
entry	1	$\bf{2}$	time (h)	product	yield $(\%)^b$
1	1a	2a	40	3a	80
$\overline{2}$	1a	2 _b	16	3 _b	65
3	1a	2c	18	3c	68
$\overline{4}$	1a	2d	16	3d	48
5	1a	2e	48	3e	22
6	1a	$\mathbf{2g}$	48	3f	62
7	1a	2 _h	36	$3\mathbf{g}$	70
8	1a	2i	48	3 _h	23
9	1 _b	2a	38	3i	24
10	1 _c	2a	52	3j	75
11	1 _c	2g	48	3k	69
12	1 _d	2a	67	31	72
13	1 _d	$2\mathbf{c}$	67	3m	80
14	1 _d	2h	67	3n	50
15	1e	2a	65	3 _o	55
16	1e	2f	48	3p	49
17	1e	2g	72	3q	49
18	1e	2h	62	3r	48
19	1f	2a	45	3s	88
20	1 _f	$\mathbf{2g}$	62	3 _t	72
21	1g	2a	48	3u	74
22	1g	2f	48	3v	65

a Reaction conditions: **1** (1 equiv), **2** (1.2 equiv), CuSO₄·5H₂O (0.2 equiv), 1,10-phenanthroline (0.4 equiv), K₃PO₄ (2.4 equiv) in toluene (0.33 M based on **1**) at 80 °C. *b* Isolated yield.

from 22% to 88%.18 To the best of our knowledge, this procedure represents the first general entry into synthesizing such compounds.

Having in hands an efficient procedure for the formation of **3**, we next focused our attention on the second step of the sequence, using carbamate **3j** as a model substrate (Table 2). While $Ph_3PAuNTf_2^{19}$ proved to be efficient in the procedure reported by Hashmi and co-workers,¹⁶ poor results were obtained in our case with 1 mol % of this catalyst (entry 1).

The use of the more electrophilic $(pCF_3Ph)_3PAuNTf_2^{19}$ improved the conversion, but the yield of the desired oxazolone **4j** remained modest $(40-52\%$, entries $2-3$). Finally, the cationic $[Ph_3P-Au-(NCCH_3)]+SbF_6-20$ complex, developed by Echavarren and co-workers, proved to be the catalyst of choice (entries $4-5$). Under optimal conditions $(1 \text{ mol } \% \text{ of } [Ph_3P-Au-(NCCH_3)]^+SbF_6^- \text{ in dichloromethane}$ at 40 °C), oxazolone **4j** could be isolated in 74% yield. In the light of these preliminary results, experimental conditions as mentioned in entry 5 were retained for the study of the scope of this transformation.²¹

a Reaction conditions: 0.5 M substrate in CH₂Cl₂. *b* Estimated by ¹H NMR. ^c Isolated yield. ^d Estimated by ¹H NMR on the crude reaction mixture.

The reaction proved to be quite general, and various *^N*-alkynyl *tert*-butyloxycarbamate **3a**-**^v** reacted using 1 mol % of $[Ph_3P-Au-(NCCH_3)]+SbF_6$ ⁻ as the catalyst to furnish the corresponding oxazolones **4a**-**^v** in generally good yields (38-94%) (Table 3). The time required to reach completion

a Reaction conditions: $3(1 \text{ equiv})$, $[(Ph_3P)Au(NCMe)]SbF_6(0.01 \text{ equiv})$ in refluxing CH₂Cl₂ (0.5 M). ^{*b*} Isolated yield. *c* Yield determined by ¹H NMR on the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard.

⁽¹⁸⁾ The poor yields obtained in the case of **3e** and **3h** may be attributed to a greater steric hindrance around the nitrogen center.

⁽¹⁹⁾ Mezailles, N.; Ricard, L.; Gagosz, F. *Org. Lett.* **²⁰⁰⁵**, *⁷*, 4133- 4136.

⁽²⁰⁾ Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Jiménez-Núñez, E.; Echavarren, A. M. *Chem. Eur. J.* **²⁰⁰⁶**, *¹¹*, 5916-5923.

was in most cases shorter than 2 h. Various substituted aryl, benzyl, or acetyl groups were tolerated on the nitrogen atom. The experimental conditions were also compatible with a variety of commonly used functionnal groups such as a propargylic acetate $(3\mathbf{o}-\mathbf{r})$, a silyl ether $(3\mathbf{s}, \mathbf{t})$, or an alkene (**3l**-**ⁿ** and **3u**,**v**). Substrates possessing a benzyl group on the nitrogen atom (**3k**, **3q**, and **3t**) furnished the desired products in moderate yields $(38-50\%)$,²² but surprisingly, these proved to be instable and could not be isolated.

In the cases where the formation of the oxazolone was rapid enough (substrates **3a**-**d**), we attempted to run the reaction using 5 mol % of AgNT f_2 as the catalyst (eq 3). We were delighted to see that the corresponding oxazolones **4a**-**^d** could be obtained in excellent yields (88-96%). These conditions were, however, not general. Substrate **3o** led, for instance, to a poor 36% yield of oxazolone **4o** (eq 4).

To account for these observations, a mechanism for the formation of the oxazolones is proposed in Scheme 2. Gold- (I) activation of the triple bond in *N*-alkynyl *tert*-butyloxycarbamate **3** promotes the formation of the stabilized cationic species **⁶**. Fragmentation of the C-O bond of the *tert*butyloxy group in **6** then leads to the formation of the neutral

(21) Brønsted acid (HNTf₂) did not promote the reaction and led to extensive decomposition of the substrate. Silver salts $(AgNTf₂, AgSbF₆)$ did promote the reaction (53%, 64%) but their efficiency proved limited to a few substrates (see eqs 1 and 2).

(22) The yield was determined by 1H NMR on the crude reaction mixture.

vinyl-gold species **7,** which is subsequently protonated to finally furnish oxazolone **4**.

In summary, we have developed an efficient two-step sequence for the synthesis of oxazolones from readily available bromoalkynes and *tert*-butyloxycarbamates. The Cu(II)-catalyzed cross-coupling reaction proved to be a general and efficient method for the preparation of various *N*-alkynyl *tert*-butyloxycarbamates. These were converted under mild conditions into a range of diversely substituted oxazolones by using a low loading of a gold(I) catalyst. Further studies related to the gold-catalyzed isomerization of other *N*-alkynyl carbamates are underway and will be reported in due course.

Acknowledgment. We thank Prof. S. Z. Zard (CNRS/ Ecole Polytechnique) for helpful discussions and Rhodia Chimie Fine for a gift of $HNTf₂$.

Supporting Information Available: Experimental procedures and spectral data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL703077G