Synthesis of Functionalized Oxazolones by a Sequence of Cu(II)- and Au(I)-Catalyzed Transformations

Florin M. Istrate, Andrea K. Buzas, Igor Dias Jurberg, Yann Odabachian, and Fabien Gagosz*

Laboratoire de Synthèse Organique, UMR 7652 CNRS/Ecole Polytechnique, Ecole Polytechnique, 91128 Palaiseau, France

gagosz@dcso.polytechnique.fr

Received December 21, 2007

A study concerning a two-step sequence leading to the formation of diversely 1,5-disubstituted oxazolones is described. The mild conditions employed allow the efficient and rapid synthesis of a variety of such compounds via an initial Cu(II)-catalyzed coupling of a bromoalkyne with a secondary *tert*-butyloxycarbamate followed by a Au(I)-catalyzed cycloisomerization of the *N*-alkynyl *tert*-butyloxycarbamates thus obtained.

Oxazolones and their derivatives are attractive building blocks in organic synthesis. They have been successfully employed in a range of transformations mostly as an alkene unit in intramolecular Pauson–Khand reactions,¹ [4 + 2] cycloadditions,² palladium-catalyzed coupling reactions,³ radical additions or cyclizations,⁴ and in hydrogenation reactions for the synthesis of functionalized oxazolidinones.⁵ The oxazolone motif is also found in a variety of synthetic substances exhibiting a wide range of pharmacological activities.⁶ Surprisingly, there are only a few methods to synthesize polysubstituted oxazolones. Most use 1,2-ami-

10.1021/ol703077g CCC: \$40.75 © 2008 American Chemical Society Published on Web 02/02/2008

noketone derivatives as starting materials and involve either high temperature,⁷ strong basic⁸ or acidic conditions,⁹ or the use of toxic carbonylating reagents¹⁰ which are not always compatible with the substitution pattern of the substrates.

ORGANIC LETTERS

2008 Vol. 10, No. 5

925-928

Gold(I) complexes have emerged as efficient and mild catalysts¹¹ for the synthesis of various oxygen-containing

^{(1) (}a) Nomura, I.; Mukai, C. J. Org. Chem. **2004**, 69, 1803–1812. (b) Nomura, I.; Mukai, C. Org. Lett. **2002**, 4, 4301–4304.

^{(2) (}a) D'Andrea, S. V.; Freeman, J. P.; Szmuszkovicz, J. J. Org. Chem. **1990**, 55, 4356–4358. (b) Hashimoto, N.; Ishizuka, T.; Kunieda, T. *Tetrahedron Lett.* **1994**, 35, 721–724.

⁽³⁾ Choshi, T.; Fujimoto, H.; Sugino, E.; Hibino, S. *Heterocycles* **1996**, *43*, 1847–1854.

^{(4) (}a) Yuasa, Y.; Ando, J.; Shibuya, S. J. Chem. Soc., Perkin Trans. 1 1996, 465–474. (b) Butora, G.; Hudlicky, T.; Fearnley, S. P.; Gum, A. G.; Stabile, M. R.; Abboud, K. Tetrahedron Lett. 1996, 37, 8155–8158. (c) Hoshimoto, S.; Matsunaga, H.; Wada, M.; Kunieda, T. Chem. Pharm. Bull. 2002, 50, 435–438.

^{(5) (}a) Shono, T.; Matsumura, Y.; Kanazawa, T. *Tetrahedron Lett.* **1983**, 24, 4577–4580. (b) Yonezawa, Y.; Shin, C.; Ohtsu, A.; Yoshimura, J. *Chem. Lett.* **1982**, 1171–1172.

^{(6) (}a) Nam, N.-H.; Kim, Y.; You, Y.-J.; Hong, D.-H.; Kim, H.-M.; Ahn, B.-Z. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 3073–3076. (b) Kudo, N.; Taniguchi, M.; Furuta, S.; Sato, K.; Endo, T.; Honma, T. J. *Agric. Food Chem.* **1998**, *46*, 5305–5312. (c) Puig, C.; Crespo, M. I.; Godessart, N.; Feixas, J.; Ibarzo, J.; Jimenez, J.-M.; Soca, L.; Cardelus, I.; Heredia, A.; Miraplex, M.; Puig, J. *J. Med. Chem.* **2000**, *43*, 214–223. (d) Pereira, E. R.; Sancelme, M.; Voldoire, A.; Prudhomme, M. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 2503–2506.

⁽⁷⁾ Krieg, B.; Lautenschlaeger, H. Justus Liebigs Ann. Chem. 1976, 788-792.

⁽⁸⁾ Lenz, G. R.; Costanza, C. J. Org. Chem. 1988, 53, 1176–1183.
(9) Aichaoui, H.; Poupaert, J. H.; Lesieur, D.; Henichart, J.-P. Tetrahe-

<sup>dron 1991, 47, 6649-6654.
(10) For selected examples, see: With phosgene (a) Hamad, M. O.;
Kiptoo, P. K.; Stinchcomb, A. L.; Crooks, P. Bioorg. Med. Chem. 2006, 14, 7051-7061. With triphosgene (b) Makino, K.; Okamoto, N.; Hara, O.;
Hamada, Y. Tetrahedron: Asymmetry 2001, 12, 1757-1762.</sup>

⁽¹¹⁾ For recent reviews on gold catalysis, see: (a) Gorin, D. J.; Toste, F. D. *Nature* **2007**, *46*, 395–403. (b) Fürstner, A.; Davies, P. W. *Angew. Chem., Int. Ed.* **2007**, *46*, 2–42. (c) Hashmi, S. A.; Huchings, G. J. *Angew. Chem., Int. Ed.* **2006**, *45*, 7896–7936.

heterocycles¹² by intramolecular addition of an oxygenated nucleophile onto an alkyne or an allene. In this respect, special attention has been paid to the *tert*-butyloxycarbonyl moiety which was used as the nucleophilic partner in the gold-catalyzed formation of butenolides,^{13a} dioxanones,^{13b,c} dioxolanones,^{13d,e} and oxazolidinones.^{13f}

Following our ongoing efforts in developing new goldcatalyzed transformations,¹⁴ we now report that diversely functionalized oxazolones could be efficiently synthesized by a gold(I) isomerization of *N*-alkynyl *tert*-butyloxycarbamates.

Our synthetic approach, depicted in Scheme 1 (eq 1), relies on a two-step sequence. The initial Cu(II)-catalyzed coupling of a bromoalkyne 1 with a *tert*-butyloxycarbamate 2,¹⁵ would lead to the formation of an *N*-alkynyl *tert*-butyloxycarbamate **3**. A subsequent 5-*endo* gold-catalyzed isomerization of **3** would furnish the desired oxazolone **4** (Scheme 1, eq 1). Indeed, while this work was in progress, Hashmi and coworkers validated this approach and reported that **3** could actually be isomerized into oxazoles **4**, using 5 mol % of Ph₃PAuNTf₂ (Scheme 1, eq 2).¹⁶ Even if this procedure proved to be efficient (65–93% yield) and led to the desired products under mild conditions (0 °C or rt), we believed that our sequence could present a major advantage. Given the restricted access to functionalized iodonium salt **5** and its inefficient coupling with **3** (27–51%), it appeared to us that the Cu(II)-catalyzed coupling of **1** with **2** might advantageously broaden the scope of the transformation.¹⁷

We first investigated the Cu(II)-catalyzed step leading to the formation of the *N*-alkynyl *tert*-butyloxycarbamate **3**. Although numerous examples of direct copper-catalyzed cross-coupling of an alkynyl bromide with a carbamate, a sulfonamide, or an amide are described in the literature,¹⁵ only one example of such a reaction was previously reported using a *tert*-butyloxycarbamate such as **2** as the reactant, and the yield was very low (12%).^{15a}

In spite of the poor yield, attributed by the authors to steric hindrance,^{15a} we decided to study this cross-coupling between a series of functionalized bromoalkynes 1a-g and *tert*-butyloxycarbamates 2a-i (Figure 1).

Figure 1. Bromoalkynes and *tert*-butyloxycarbamates used in the Cu(II)-catalyzed cross-coupling reaction.

Using slightly modified reaction conditions^{15a} (20 mol % of CuSO₄·5H₂O and 40 mol % of 1,10-phenanthroline as the ligand with K₃PO₄ as the base in toluene at 80 °C), we were delighted to see that the cross-coupling was generally much more efficient than previously reported (Table 1). A wide range of *N*-alkynyl *tert*-butyloxycarbamates $3\mathbf{a}-\mathbf{v}$ containing various functionalities were thus synthesized in yields ranging

⁽¹²⁾ For selected examples, see: *Furans* (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. *Angew. Chem., Int. Ed.* 2000, *39*, 2285–2289.
(b) Yao, T.; Zhang, X.; Larock, R. C. *J. Org. Chem. Soc.* 2005, *70*, 7679–7685. (c) Hashmi, A. S. K.; Sinha, P. *Adv. Synth. Catal.* 2004, *34*6, 432–438. (d) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. *Org. Lett.* 2005, *7*, 5409–5412. (e) Istrate, F.; Gagosz, F. *J. Org. Chem.* 2007, *73*, 730–733. *Oxazoles and oxazolines* (f) Hashmi, A. S. K.; Rudolph, M.; Shymura, S.; Visus, J.; Frey, W. *Eur. J. Org. Chem.* 2006, *4905–4909*. (g) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. *Org. Lett.* 2004, *6*, 4391–4394. (h) Milton, M. D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. *Chem. Commun.* 2004, 2712–2713. (i) Kang, J. E.; Kim, H.-B.; Lee, J.-W.; Shin, S. *Org. Lett.* 2006, *8*, 3537–3540. *Lactones and furanones* (j) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Genêt, J.-P.; Michelet, V. *J. Am. Chem. Soc.* 2006, *128*, 3112–3113. (k) Liu, Y.; Liu, M.; Guo, S.; Tu, H.; Zhou, Y.; Gao, H. *Org. Lett.* 2006, *8*, 3445–3448.

^{(13) (}a) Kang, J. E.; Lee, E.-S.; Park, S.-I.; Shin, S. Tetrahedron Lett.
2005, 46, 7431-7433. (b) Shin, S. Bull. Korean Chem. Soc. 2005, 26, 1925-1926. (c) Kang, J;-E.; Shin, S. Synlett 2006, 717-720. (d) Buzas, A.; Gagosz, F. Org. Lett. 2006, 8, 515-518. (e) Lim, C.; Kang, J.-E.; Lee, J.-E.; Shin, S. Org. Lett. 2007, 9, 3539-3542. (f) Buzas, A.; Gagosz, F. Synlett 2006, 2727-2730. (g) Robles-Machin, R.; Adrio, J.; Carretero, J. C. J. Org. Chem. 2006, 71, 5023-5026. (h) Lee, E.-S.; Yeom H.-S., Hwang J.-H., Shin S. Eur. J. Org. Chem. 2007, 3503-3507.

^{(14) (}a) Istrate, F., Gagosz, F. Org. Lett. 2007, 9, 16, 3181. (b) Buzas,
A.; Istrate, F.; Gagosz, F. Angew. Chem., Int. Ed. 2007, 46, 1141–1144.
(c) Buzas, A.; Gagosz, F. J. Am. Chem. Soc 2006, 128, 12614–12615. (d)
Buzas, A.; Istrate, F.; Gagosz, F. Org. Lett. 2007, 9, 985–988. (e) Buzas,
A.; Istrate, F.; Gagosz, F. Org. Lett. 2006, 8, 1957–1959.

⁽¹⁵⁾ For leading references dealing with the Cu(II)-catalyzed coupling of bromoalkynes with carbamates, see: (a) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanove, I. K.; Shen, L.; Tracey, M. R. *J. Org. Chem.* **2006**, *71*, 4170–4177. (b) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. **2004**, *6*, 1151–1154. (c) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc **2003**, *125*, 2368–2369. (d) Dunetz, J. R.; Danheiser, R. L. Org. Lett. **2003**, *5*, 4011–4014.

⁽¹⁶⁾ Hashmi, A. S. K.; Salathé, R.; Frey, W. *Synlett* **2007**, 1763–1766. For another gold-catalyzed transformation of alkynylamides, see: Couty, S.; Meyer, C. Cossy, J. *Angew. Chem., Int. Ed.* **2006**, *45*, 6726–6730.

⁽¹⁷⁾ The reaction reported by Hashmi and coworkers (ref 16) was limited to the use of substrates **3** bearing a hydrogen or a silyl group on the akyne and another electron-withdrawing group (Boc, Ts, Piv) on the nitrogen atom.

 Table 1. Cu(II)-Catalyzed Formation of N-Alkynyl

 tert-Butyloxycarbamates^a

R ₁	≡—Br	1a-g	CuSO ₄ .5H ₂ O 1,10-phenanthroline	R	o No
R ₂	⊣ N 2 a Boc	a-i	K ₃ PO₄ toluene, 80 ℃	34	R ₂ /
entry	1	2	time (h)	product	yield $(\%)^b$
1	1a	2a	40	3a	80
2	1a	2b	16	3b	65
3	1a	2c	18	3c	68
4	1a	2d	16	3 d	48
5	1a	2e	48	3e	22
6	1a	$2\mathbf{g}$	48	3f	62
7	1a	2h	36	3g	70
8	1a	2i	48	3h	23
9	1b	2a	38	3i	24
10	1c	2a	52	3j	75
11	1c	$2\mathbf{g}$	48	3k	69
12	1d	2a	67	31	72
13	1d	2c	67	3m	80
14	1d	2h	67	3n	50
15	1e	2a	65	30	55
16	1e	2f	48	3p	49
17	1e	$2\mathbf{g}$	72	3q	49
18	1e	2h	62	3r	48
19	1f	2a	45	3s	88
20	1f	2g	62	3t	72
21	1g	2a	48	3u	74
22	1g	2f	48	3v	65

^{*a*} Reaction conditions: **1** (1 equiv), **2** (1.2 equiv), $CuSO_4 \cdot 5H_2O$ (0.2 equiv), 1,10-phenanthroline (0.4 equiv), K_3PO_4 (2.4 equiv) in toluene (0.33 M based on **1**) at 80 °C. ^{*b*} Isolated yield.

from 22% to 88%.¹⁸ To the best of our knowledge, this procedure represents the first general entry into synthesizing such compounds.

Having in hands an efficient procedure for the formation of **3**, we next focused our attention on the second step of the sequence, using carbamate **3j** as a model substrate (Table 2). While Ph₃PAuNTf₂¹⁹ proved to be efficient in the procedure reported by Hashmi and co-workers,¹⁶ poor results were obtained in our case with 1 mol % of this catalyst (entry 1).

The use of the more electrophilic $(pCF_3Ph)_3PAuNTf_2^{19}$ improved the conversion, but the yield of the desired oxazolone **4j** remained modest (40-52%, entries 2-3). Finally, the cationic $[Ph_3P-Au-(NCCH_3)]^+SbF_6^{-20}$ complex, developed by Echavarren and co-workers, proved to be the catalyst of choice (entries 4–5). Under optimal conditions (1 mol % of $[Ph_3P-Au-(NCCH_3)]^+SbF_6^-$ in dichloromethane at 40 °C), oxazolone **4j** could be isolated in 74% yield. In the light of these preliminary results, experimental conditions as mentioned in entry 5 were retained for the study of the scope of this transformation.²¹

Table	2. Optimization of	the Ca	talytic 3	System ^a	_	
	Boc	catalyst	1 mol %		o⊸°	
	C₅H ₁₁ ────N` ── Ph 3j	CH ₂ Cl ₂		C ₅ H ₁₁	√N~Ph 4j	
entry	catalyst		temp. (°C)	time	$\operatorname{convrsn.}_{(\%)^b}$	yield (%)
1	PPh_3AuNTf_2		20	7 h	63	28^c
2	(pCF ₃ Ph) ₃ PAuNTf ₂		20	72 h	85	52^d
3	$(pCF_3Ph)_3PAuNTf_2$		40	$2.5~\mathrm{h}$	100	40^d
			~~		100	001
4	$[Ph_3P-Au-(NCCH_3)]^+$	SbF_6^-	20	4.5 h	100	69^a

 a Reaction conditions: 0.5 M substrate in CH₂Cl₂. b Estimated by $^1\rm H$ NMR. c Isolated yield. d Estimated by $^1\rm H$ NMR on the crude reaction mixture.

The reaction proved to be quite general, and various *N*-alkynyl *tert*-butyloxycarbamate 3a-v reacted using 1 mol % of [Ph₃P-Au-(NCCH₃)]⁺SbF₆⁻ as the catalyst to furnish the corresponding oxazolones 4a-v in generally good yields (38–94%) (Table 3). The time required to reach completion

R ₁ —	=N	Ph ₃	,P−Au−N ≡− 1 mol %	- , SbF _€	$R_1 \rightarrow N_R_2$		
	н 3а-v	2 ′ `	CH₂Cl₂, 40 ℃		4a-v		
entry	substrat	e R ₁	R_2	time	product	yield ^b	
1	3a		Ph	25 min	4a	83%	
2	3b		<i>p-</i> FPh	10 min	4b	88%	
3	3c		<i>p</i> -CIPh	10 min	4c	88%	
4	3d		<i>p</i> -BrPh	10 min	3d	83%	
5	3e	Pn	2,4(OMe) ₂ Ph	16 h	4e	85%	
6	3f		Bn	16 h	4f	78%	
7	3g		CH ₂ CO ₂ Et	12 h	4g	93%	
8	3h		کې CO₂Me	8 h	4h	94%	
9	3i	<i>t</i> -Bu	Ph	2 h	4 i	58%	
10	3j	л С Ц	Ph	30 min	4 j	74%	
11	3k	11-05111	Bn	40 min	4k	50% ^c	
12	31	\sim	Ph	30 min	41	78%	
13	3m	~	<i>p</i> -CIPh	10 min	4m	94%	
14	3n	۳ 	CH ₂ CO ₂ Et	5 h	4n	70%	
15	30		Ph	40 min	4o	71%	
16	3р	š⁄^OAc	2-Napht	45 min	4р	88%	
17	3q		Bn	20 min	4q	50% [°]	
18	3r		CH ₂ CO ₂ Et	20 min	4r	49%	
19	3s ,		Ph	1 h	4s	69%	
20	3t ີ		Bn	40 min	4t	38%	
21	_ 3u	$\sim \sim \sim$	Ph	30 min	4u	71%	
22	3v ³	i i l	2-Napht	3 h	4v	80%	

^{*a*} Reaction conditions: **3** (1 equiv), [(Ph₃P)Au(NCMe)]SbF₆ (0.01 equiv) in refluxing CH₂Cl₂ (0.5 M). ^{*b*} Isolated yield. ^{*c*} Yield determined by ¹H NMR on the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard.

⁽¹⁸⁾ The poor yields obtained in the case of 3e and 3h may be attributed to a greater steric hindrance around the nitrogen center.

⁽¹⁹⁾ Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133–4136.

⁽²⁰⁾ Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Jiménez-Núñez, E.; Echavarren, A. M. Chem. Eur. J. 2006, 11, 5916–5923.

was in most cases shorter than 2 h. Various substituted aryl, benzyl, or acetyl groups were tolerated on the nitrogen atom. The experimental conditions were also compatible with a variety of commonly used functionnal groups such as a propargylic acetate (30-r), a silyl ether (3s,t), or an alkene (3l-n and 3u,v). Substrates possessing a benzyl group on the nitrogen atom (3k, 3q, and 3t) furnished the desired products in moderate yields (38-50%),²² but surprisingly, these proved to be instable and could not be isolated.

In the cases where the formation of the oxazolone was rapid enough (substrates 3a-d), we attempted to run the reaction using 5 mol % of AgNTf₂ as the catalyst (eq 3). We were delighted to see that the corresponding oxazolones 4a-d could be obtained in excellent yields (88–96%). These conditions were, however, not general. Substrate 30 led, for instance, to a poor 36% yield of oxazolone 40 (eq 4).

To account for these observations, a mechanism for the formation of the oxazolones is proposed in Scheme 2. Gold-(I) activation of the triple bond in *N*-alkynyl *tert*-butyloxy-carbamate **3** promotes the formation of the stabilized cationic species **6**. Fragmentation of the C–O bond of the *tert*-butyloxy group in **6** then leads to the formation of the neutral

(21) Brønsted acid (HNTf₂) did not promote the reaction and led to extensive decomposition of the substrate. Silver salts (AgNTf₂, AgSbF₆) did promote the reaction (53%, 64%) but their efficiency proved limited to a few substrates (see eqs 1 and 2).

(22) The yield was determined by ¹H NMR on the crude reaction mixture.

vinyl-gold species 7, which is subsequently protonated to finally furnish oxazolone 4.

In summary, we have developed an efficient two-step sequence for the synthesis of oxazolones from readily available bromoalkynes and *tert*-butyloxycarbamates. The Cu(II)-catalyzed cross-coupling reaction proved to be a general and efficient method for the preparation of various *N*-alkynyl *tert*-butyloxycarbamates. These were converted under mild conditions into a range of diversely substituted oxazolones by using a low loading of a gold(I) catalyst. Further studies related to the gold-catalyzed isomerization of other *N*-alkynyl carbamates are underway and will be reported in due course.

Acknowledgment. We thank Prof. S. Z. Zard (CNRS/ Ecole Polytechnique) for helpful discussions and Rhodia Chimie Fine for a gift of HNTf₂.

Supporting Information Available: Experimental procedures and spectral data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL703077G